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Executive Summary

The solution of dynamic contact problems within an explicit fite element program

such M the LZNL ~Y?\r~: progrP.P.ls is p.?rizcsse$. ir. t!le attache~! repo:t. (?ur approach is

to represent the solution for the deformation of bodies using the explicit algorithm but

to solve the contact part of the problem using an imp2icif approach. Thus, the contact
conditions at the next solution state are considered when computing the acceleratiori state

for each explicit time step. For the current development we employ a Newmark update
procedure where the position of a node at the next step is given by

1
Zn+l = x~ + Atvn + -At2an

2

A nomad gap for each slave node to master segment is computed using interpolants of

the above Newmark formula. For normal gaps which violate the impenetrability condition

for solid bodies a node to segment contact constraint is introduced. This leads to a set

of equations which couple the degrees of fkedom which, when linearized, lead to a set of

simultaneous linear equations. Thus, the contact part is implicit.

Since the explicit time step is constrained by the Courant condition, we assume that

changes in the directions of the normal to contact surfaces do not change rapidly. Using

this constraint, the gap condition becomes linear and it is necessary to only solve the

implicit equations once per time step.

For contact conditions which are node-node we are able to show that satisfying the

contact conditions using the above approach lead to states for which the velocities and

accelerations computed from the Newark formulas are free from spurious jumps commtmly

encountered in explicit solutions. The interpolated conditions may not satisfy the jump

states exactly, but numerical solutions confirm that good results are obtained. To facilitate

the description of contact surfaces an automatic enumeration for the slave nodes and master

segments on the surfaces of each body was employed.

The drawback of the method proposed in the study is the need to solve the implicit set

of equations resulting from contacts. This is offset by the improved velocity/acceleration

states obtained and the fact that no reduction hi the Courant condition for setting the

time step is imposed by contacts. While our study employed a direct solution for the _

linear implicit solutions resulting from contacts an iterative scheme, etg., a preconditioned

conjugate gradient method, may be employed.
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1. ABSTRACT

This paper addresaea the solution of dynamic contactproblems by finite element methods. A new treat-
ment for transient effects sasociated with initial dynamical contacts between two bodies is developed and
implemented. For many treatment, it is necesary to introduce an artificialdissipation mechanism into an
analysis to control oscillations readting from the impacti associated with dynamical contacts. For an explicit
algorithm, it ia pomible to introduce the conatrainta on the displacement field such that the spurious oacil-
lationa may be avoided without using artficial damping. The proposedtreatment usesan explicit-implicit
algorithm in which an explicit predictor step is performed. In the case of contact, an implicit corrector step
is then performed that enforces the zero gap constraint at all pointa of contact. This algorithm minimizes
the spurious oecillationa usually associated with dynamic contact problems.

2. INTRODUCTION

The ardyain of interacting bodies which include the effects of both material nonlinearity and large deforms- -
tiona hae received considerable attention during the last few years[2-11, 13-21, 23-38]. Many improvements
to this type of analysis have-been made and it is p=ble b ei%ctivel y addresa a class of nonlinear systems



.
-.

.

-.,.

2 M. Salveson

in which constraints that rdect contact are included. In moat work reported to date, one-step methods have
been used to advance the solution in time. Generalchsaesof on~tep methods have been proposed for the
time integration of the momentum balance equation by many authom, including Newmark[22] and Katona
and Zienkiewicz[12].

Much effort haa been expended to develop stable and accurate methods which may be applied to general
claeea of problems. In general, methods are divided into groupe (1) explicit integration of the momentum
balance equations; and (2) implicit integration of the momentum balance equations. In this paper a vtudy
iv presented to consider a general treatment of contact constraint and their efkta on a tranaient analysis.
Special consideration ia directed to the dynamical aapecta of contact problem so that use of artificial diffusion
mechanism may be avoided.

Section 3 of thii report develops the contact equations for a general hyperelastic material. Section 4 develops
the dynamic equationa of motion. Section 5 examinea the behavior of the velocity and acceleration fields at
contact interfaces. Section 6 preaenta a 2-D contact detection algorithm. Section 7 preeenta a number of
examples that test the p:c?=ed a!yiithm.

3. DEVELOPMENT OF VARIATIONAL EQUATIONS

Thii vection develops the contact equations for a general hyperelastic material.

Consider a body B occupying a region S& with boundary ~t at some time t. Define the region occupied
by B at time b to be f20, the referenm configuration, with boundary &lo. Each material point in the body
h represented by its position vator X in the reference configuration. Aaaume the existence of an invertible
mapping ~: % x % + Q such that

x= +(x, t) (3.1)

where x is the position vector of the material point X in the current configuration Q. See Figure 3.1.

FIGURE 3.1 Mapping of Reference Configuration to Current Ckmfiguration

A fundamental measure of deformation is the deformation gradient defined by

(3.2)

fromwhichthe first Piol*Kkhoff stress tensor for tlnite elasticity maybe deduced from an energy functional
w:

(3.3) -

W’= l?(Vou) = %(F) (3.4)
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It ia common in numerical simulations to introduce the displacement fieId (assuming a constant basis ~ and
common origin for the body)

u x-= x (3.5)

Hence,

VOU= F-I (3.6)

This gives

(3.7)

Conaider a body force per unit mass in the reference configuration, bo, and a surface traction p defined by
p = PN where N is the outward normal to the surface in the reference configuration. These terms together
wt~ J%’inay be w+ t~ C.KF:-=S:32 ezez;y ;:~c:;~z?-~ C:~’u):

II(u) =
/
* pow(vou) dv -

1
@be. udV–

!
~%pod A (3.8)

m

We desire a valid solution for u such that

m(u) =
/

P . VO(6U)dv -
I

~bo.6udV -
I

p.6udA=0
no no ma

This may now be transformed to the current conilguration ta yield

where

t=un

~p~T

‘=3
J = det(F)

(3.9)

(3.10)

(3.11)

Here, n is the outward unit normal to the surface in the current configuration.

Utilizing D’Alembert’s principle, Equation (3.10) may now be modified to include inertial terms:

/
u . V(6U) dv +

14 fidv-L*@6udv-lJ’’ uda=0
(3.12)

n,

Once an expression for W’ is chosen, a streaa function maybe computed:

u = f(v@l) (3.13)

Spatial discretization of the body B using finite element methods [39, 40] will then yield the familiar equations

Mii + p(u) = F (3.14)

To include the efhcta of contact, Equation (3.8) h augmented with a set of constraints, g, and their Lagrange
multipliers, A :

ii(u, A) = rI(u)+A. g (3.15)

g is the WAorder wxtor &scribing n discrete constraints on the displacement field. Here, each constraint is
a zeropenetration condition at the discrete points of contact.
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Define the aemnd term on the right hand side of Equation (3.15) as

n -= A-g

The first variation of Equation (3.16) is

where

()
T

G(u) = :

(3.16)

(3.17)

(3.18)

i L

I

J&!!y-
Master Nod. 2 Sbw Nodo

d.

t-l
FIGURE 3.2 Discrete Point of Contact

For the moment, we will aasurne that the normal is constant along the master segment. Note that this
contact condition may exist between twodistinct bodies or two pointa on a oingle body.

At time %+1 thegap condition at point i is defined by

gi = (G - (1 - ~i)%l - of’xm~) . n (3.19)

where for the ith gap cundition

where A m a Boolean selection operator.

Noting that 6x = I%, the fit variation of Equation (3.19) becomes

6gi +&, - (1 - ~i)~l - @i&2)~U . n+

(6ai(AAI - &2)x)” n+

((M. - (1 - ~i)& - a’4&)X) . 6D

(3.21) -

This may be written as
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$gi =(AA.-(1 - Qi)& - aiAL2)4u” n+

()
(&~u) . A

1141X
((AI - 42)4 “n+ (3.22)

()
(T “(B’Ju)) h ((&, - (1 - a’]& - cxi~~)x) -T

Equation (3.22) may be generalized to the case where a continuous outward normal is interpolated along the
maqter contact segment.

Setting the first variation of Equation (3.15) to zero yields at time %+1

M.+Iiin+I + P(%+I) + G(%+I)%L+I = E%
gn+l = o

(3.23)

where at time tn+l

M-+l ia the maw matrix

P(%+l ) is the atreaa divergence

G(w+l) is the contact matrix (3.24)

Fm~l ia the vector of txternal loada

s.+1 ia the vedor of constraints

Equation (3.231) ia a aetof orchmry differential equations and Equation (3.232) is a aet of algebraic equationa.
The pair together ia known aa diffimmtial algebraic equations (DAE) [1] and may be conveniently solved
using on-step time integration methods. For example, using the Newmark method [22] we have

Un+I = un + Atmvn + (A%)z (; - p)an + (A%J2 @n+I
(3.25)

Vn+l = Vn + Atn(l - y~ + Atfly~+l

where

At .=k+l-%

v- =&l

+=k

@,Y= integration conatanta

For non-zero /3 and y , Equation (3.23) may now, in general, be solved.
with $ = 0.0 and 7 = 0.5, Equation (3.23) ia modiied to

(3.26)

However, for the explicit algorithm

W+l&+I + @b+I)&I = ‘~%1- P(%+l) (3.27)
&l+2 = o

Note that the gap condition ia now to be aatiafled at time tfi+l.This is becauae for explicit time integration,

the diaplacement field at time tm+z ia entirely deilned by the atate at time %+1. We then choose the rate
term at time t.+l to aa~ the gap conatrainta at time tfi+z.

% facilitate solution of the contact terms in Equation (3.27), a number of simplifying aaaumptions will be

made aa discuaaed in the next aedon.
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4. EQUATIONS OF MOTION

For our algorithm, we neglect the second and third term in Equation (3.21). The tit term is O(l). The
second term is O(Atz), so it is neglected. The third tam is neglected because the outward normal n is
assumed to be constant between the predictor and corrector step (thrn is the only step when contact is
considered). Thii assumption is acceptable only because this algorithm is subject to the numerical stability
constraints of an explicit algorithm.

An explicit algorithm for a linear elastic materiaI requires that

h
AtS—

k=
(4.1)

whee h is a characteristic kngth and ~ is the maximum wave aped in the material.

Signifi=nt errom in the calculationof the normal can only be introduced if the velocity of contact segment
approaches the ndura? vw,v qJeedc d t~e mz:e%?s.

Assuming that m is constantbetween the predictor step and the corrector step makes Equation (3.21) linear
in u. For clarity we remite Equation (3.27), noting this linearity

W+lL+l + G.+lA+l = Fn%l - P(%+l)

&l+2 = o

We now assume that the mass represented by M+l is lumped at the nodes.
not inhially known, the following predictor equations are solved explicitly:

M&+l = Fn~l - P(Um+l)

(4.2)

Because the forces, &+l, are

(4.3)

Velocity and position “predictor” terms are then found using the explicit Newrnark discretization.

*.+1 = Vn + ;LW@n + &+l)

1
(4.4)

%+2 = =+1 + &+lQl + #&+&&+ I

Equilibrium must be enforced at time %+1 and the zero penetration condition must be enforced at time
tm+z.

mm+z and gn+a are certainly not known a ptioti but may be apprtimated using the “predictor” positiona
of the master and slave nodes. Additionally, iteration on the contact (or %cwrectir” ) stage of thw algorithm
may be used to yield better valu- for both %+2 and *+2.

Note that if the ~:h gap condition, gi, k greater then zero for the “p~lctor” values of position, velc&ty,
and acceleration are correct and no contact has taken place at the ith point during this time step. If contact
has occurred, gi must be set to zero and position, velocity, and acceleration terms must be “corrected”
to account for the external contact forces on the bodies. This k done by subtracting Equation (4.3) from
Equation (4.2).

M(%+l - i&+l) + Gm+IA = O
(4.5)

gn+l = o

Equation (4.5) may be expressed as the symmetric system of linear equations

(4.6)

where
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( (%+1 + 4+1 v. + ;Atna.
))

2

(AG+l)Z + At.+lAtm

(4.7)

Once Equation (4.6) ia solved for a.+], axrected valuea for v~+l and G+Z may then be obtained using the
Newmark integration scheme.

5. BEHAVIOR OF INTERFACE VELOCITY AND ACCELEI&kTION

In the previous section, we motivate the imposition of a gap mnatraint on the displacement field at time
&+z. This leads to other desirable properties.

An implicit Newmark time integration algorithm will lead to opurioua reaulta in the velocity and acceleration
fields if the zero gap condition is only imposed on the displacement field. This is not the case for an explicit
Newmark :hne intega:;cz 312c:;:.:1. .:-l; s.~v:ic~: r;::~:?:sc:i t>e ve!~~j~y a<? a~~.l~.-...-<.timfis?dsvzzi.512after

two time steps.

The Newmark temporal diecretization ia given by

Vm+l= v. + Atm(l - 7)%+1

%+2 = xm+I + AA+ IVm+I+ -; (fJ~n+I)2(1 - P)*+I + : (W2 /%+2 (5.1)

Atm+. = &++l - tm+i

For an explicit algorithm, c.hooae~ = 0.0 and 7 = 0.5. Aaaume the zero gap condition is enforced on the
displacement field at times t.+2, t.+3,and t.+, such that for a one dimensional problem

2&+2= <+2
J&+3 = X7+3 (5.2)

<* = e+.1

Conaider the zero gap condition at time t.+. Equation (5.1) gives ua

1 1
14+3 + Afn+3v:+3 + ~ (At.+3)2 z&+3 = X?+3 + At~+3vE+3 + - (At~+3)2 aF+3

2
(5.3)

Noting that the zero gap condition is alao satisfied at time %+3

V;+3 + ~Atm+&+s = v?+3 + ~At.+3aF+3 (5.4)

Equation (5.11) may be aubatituted into Equation (5.4) to give .

v~+2 + ~ Atn+ad+z + ~(At~+zAtfi+s)a~+z =
(5.5)

v~+z + ~At.+zaF+z + ~(Atn+zAt.~)G+z

Similarity,the zero gap condition at times tfi+z and tm+j yields

v~+2 + ~Atm+z4+a = Vz+a + ~At.+2aZ+a (5.6)

(5.7)

Substitution into Equation (5.5) gives

Substituting this into Equation (5.4) gives
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V:+3 = V:+3 (5.8)

Note that for pemistent contact, enforcement of the zero gap condition on the displacement field will alm
produce a zero gap condition on the velocity and acceleration fields for all time points greater then or equal
to &*.

For two or more dimensions, detine an outward m.rface normal at time tito be m. Assume the zero gap
condition io enforced on the displacement field at times tfi+Z, tfi+s, and %x, such that

(xfn+2- *+2) “ %+2

(:::.+3– 1:4:) . q.+:

(4+4 – J&f) “ %+4

(5.9)

Proceeding in a similar manner as before will yield

(*+3 - *+3) “ (n.+ - %+3)+

~A%+2(A&+2+ AL+g) (a& - a~+s)” %+s-

Atn@
~ (%+2 - 34+2)” (nn+3 - Ik+2) +

(5.10)

.—

At.+g [( 1
V:+2 + #W+2&+2

)(

- lf~+~ + ~At.+&+2 )1“(%+4-%+4)= o

If we aasume that the rotation of a contact surface is relatively small between time steps then we may assume

w+2 ~ n.+3 * nn+2 (5.11)

Which then leada to the desired result

(5.12)

The explicit-implicit algorithm proposed in this report will preserve this behavior of the velocity and ~
leration fields acrosa the contact interface.

6. A 2-D CONTACT DETECTION ALGOIUTHM

This algorithm msurneu a peicewiae linear contact surface. It assumes a constant velocity during the current
time step. It will produce a normalized time of cont&ct, T., as well as the point of contact, a. S= Figure

6.1, Figure 6.2, and Figure 6.3.
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FIGURE 6.1 Contact Point T = O

‘2
* ---

FIGURE 6.2 Contact Point r = r.

m
s

FIGURE 6.3 Contact Point r = 1

Define ~i, -Ii, -d -i to be the position VeCtO~ d T = O for the dave node, master node 1, and

mmter node 2, respectively. Also, deli.ne Xst, xxnlj, and XM2j to be the position vectors at r = 1 for
the slave node, master node 1, and master node 2, respectively. For contact detection we aaaume constant
velocity within each time step, thus these pmition vectors may be expreaaed aa a linear function of r.

The normal is constant along the length of the master element. It may also be defined aa a fimction of r.
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(6.2)

If contact occurs & vome r= between r = Oand ~ = 1, incluzive, then the following muzt be true:

(xa-xrn*). n (6.3)

Substitution of Equation (6.1) and Equation (6.2) into Equation (6.3) will now yield

AFCZ+BTC+C=O (5.4)

Wke

Once Equation (6.5) ia solved for 7., ~ can be found by letting ~ = T..

p - XJnlll Ia=Ild-J4ir=,.
7. EXAMPLES

All bodiev in the examples are modeled wing the non-linear elaztic conatitutive relation deduced from

w(c) = (~J (ln(J))2 + p 11-3 – ~ In(J)
)

which yields the Cauchy streadeformation relation:

u = +1+@ -1)

(6.6)

(7.1)

For small deformation, this model yields reaulta which coincide with isotropic linear ekaticitywhere h and

p are Lam6 conatanta. For finite deformation, the model ghear=sonable results for principal stretches less
than 4.0. In examplea below, principle vtretch= are greater than zero and much km than 4.0.

We present a aet of example problems which test the performanti of the =mtact formulation presented above.
For these calculations we uae A = 33333 and p = 5000. ~

?.1. Bar Striking R&d Surface

A horizontal bar of dmension 30 by 4 ia given an initial velocity of 50. It has an even mesh of 30 by 6 -
elements. The vertical bar is rigid and fixed in place. It haa amenaions of 4 by 30 and hva an even mesh of
6 by 30. This mevh ia Aowm in Figure 7.1. Both bars have a maas density of PO = 0.1. Here, however, the
vertical bar is rigid and ia fixed in place. The horizontal bar is given an initial velocity of-50. The deformed
shape is shown in Figure 7.2 with contours for rY1lsuperimpoeed-
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This modd waa compared to one where the horizontal diaplacementa of the tip of the horizontal bar were
ilxed, yielding identical reds.

FIGURE 7.2 Bar Striking Rigid Surface, Deformed Shape, u1l
Streaa

A time hiatay plot of the total energy for the maximum stable time step is show below.

-~
o 9.005 0.01 0.01 s O.=

nm.

FIGURE 7.3 Bar Striking Rigid Surface, Total Energy, Maximum
Time Step

History plots of tip diaplacementa, velocities and accelerations are given below.
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‘“ l-----J
m.

FIGURE 7.4 Bar Striking Rigid Snrface, Tip Dkplacement

n, Vd. emy “9. T,-.

FIGURE 7.5 Bar Striking Rigid Surface, TW Velocity

o

‘D
lo.omomomo

-“

-aooo

Imooo ;—M*

nm.

FIGURE 7.6 Bar Striking Rigid Surface, Tip AcaAeration

7.2. Bar Striking (%npliant Surf..

The undeformed mesh ia aa before. A horizontal bar of dimension 30 by 4 is given an initial velocity of
60. It haa an even mesh of 30 by,6 elements. ‘l’he verti~ bm is unconstrained ~d initially at rest. It has _
dimensiom 4 by 30 and haa an even mesh of 6 by 30. Both barn have a masa density of PII= 0.1.

The deformed shape is shown in Figure 7.7 with cmtoura for cl 1 auperimpoaed.
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FIGURE 7.7 Bar Strikrng (%mpliant Surface, Deformed Shape, all
Strella

The total energy in the_ ia calculated at each time step. This time hutory ia shown in Figure 7.8 for
a time step that approached the maximum stable step size for im~ropic elasticity. The variationa in energy
are typical of an expIicit solution.

FIGURE 7.8 Bar Striking Compliant Surface, Total Energy, Maxi-
mum Time Step

If the time step ia reduced by an order
F@e 7.9. This behavior ia typical for

of magnitude, the variation ia greatly diminished, aa can be aaen in

FIGURE 7.9 Bar Striking Compliant Surface,Total Energy, Small
Time Step

Time history plot of tip displaament, velocity and acceleration are giveII below. Note that there ia no high _
t%equencynoise. This ia becauae any diacontinuoua contact behavior ia minhnbed by the explicit-implicit
treatment of the contact surface. Any noise is efkctively damped out within two time atepa. Also note that
the zero penetration mnditiona on the rate terms are not enforced at the hatant of amtact. The acceleration
history exhhita a spike at the point of contact. This spike represents the dime delta fimction that is taking
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place between two diacretiaed time pointa. An expected, the velocity and acceleration time histories are self
corrected after two time steps.

0s

02

O.M‘i/4—L9aau
--- SW

0.!

“-x--_’
0 O.oos 0.01 0.01s aoz

m-.

FIGURE 7.10 Bar StrikingCompliant Surfa~ Tip Displacement

5 ~

o t

o 0.oo6 0.ol ao*5 aoz

TIW9

FIGURE 7.11 Bar Striking Compliant Surface, Tip Velocity

n@ AOO— a vs. n..

-r-—------l

FIGURE 7.12 Bar Striking Compliant Surface, Tip Acmleration

This example is repeated modifying the mesh of the vertical bar to be 6 by 31. This mesh is shown in Figure
7.13. This will alter the initial contact from node on node on anrface. Tip displacements, velocities, and
accelerations are then compared to verify that the constraints on these fields still hold. Time hietoriea of
tha fields are indistinguishable from Figure 7.10, Figure 7.11, and Figure 7.12.
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FIGURE 7.13 Bar Striking Compliant Surface, Undeformed Shape

7.3. Bar Striking Like Bar

Two horizontal b~-s, both cf dimeri~ian 30 by < are give= initial vikxitiesof 50 and -53. Both have an even
m-h of 30 by 6 elements. The mesh ia shown in F@re 7.14. Both bars have a maae density of ~ = 0.1.

FIGURE 7.14 Bar Striking Like Bar, Undeformed Shape

The deformed shape ia ehown in Figure 7.15 with contoum for qmqxrimposed.

FIGURE 7.15 Bar Striking Like Bar, Deformed Shape, u11Stres8

Time history plots of tip displacement, tip velocity, and tip acceleration are given below.

FIGURE 7.16 Bar Striking Like Bar, TIP Displacement
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m.

FIGURE 7.17 Bar Striking Like Bar, Tip Velocity

m.

FIGURE 7.18 Bar Striking Like Bar, Tip Acceleration

7.4. Bar St.rikixIgDissimilar Bar

The undeformed mesh is aa before. Here, the left bar haa a masa density of ~ = 0.5 and the right bar haa a
masa density of p. = 1.0. The deformed mesh ia shown in Figure 7.19 with contours for all superimposed.

.

FIGURE 7.19 Bar Striking Unlike Bar, Deformed Shape all Streaa

Time history plots of tip displacement, tip velocity, and tip acceleration are given below.
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FIGUIU 7.20 Bar Striking Unlike Bar, T@ Diaplacamat

FIGURE 7.21 Bar Striking Unlike Bar, Tlp Velocity

-r--—------

..L-- 8
m.

FIGURE 7.22 Bar Striking Unlike Bar, Tip Acceleration

7.5. Disk Striking Cbmpliant Surfiwe

A disk is given an initial horizontal and vertical velocity.
A deformed mesh of the disk striking a vertical surface is
horizontal surface in Figure 7.25-

The undeformed mesh ia shown in Figure 7.!i%
shown in F@e 7.24. Finally, the disk attikes a “
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Nt-
EI

FIGURE 7.23 Disk Striking Complii Surface, Undeformed Shape

. FIGURE Shape,
(711Strem
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~~~
7.25 12iek S::iking Compliant Surface, Deformed Shape,
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